第2回 魁!! GPUクラスタ on GKE ~PodからGPUを使う編~

2017/10/13
このエントリーをはてなブックマークに追加

ドーモ、魁エンジニアを目指しているエンジニアの吉海です。
今回はPodからGPUを使う方法についてご紹介します。デプロイするGPUクラスタは前回の記事で作成したクラスタです。

今回の記事は2部構成で、これは第2回目の記事です。

本記事の構成は以下のようになっています。

  • GPUを使うために必要な設定について
  • サンプルのPodをデプロイ

対象読者

  • Kubernetesを使ったことがある方
  • Google Container Engineを使ったことがある方
  • 魁たい方

検証環境

Kubernetes側の環境

  • Google Container Engine 1.7.5
  • Kubernetes 1.7.5

クライアントの環境

  • macOS Sierra 10.12.6
  • kubectl 1.7.3

GPUを使うために必要な設定について

PodからGPUを使うには2つほど設定が必要になるので、それについてご説明します。

コンテナのリソースの設定

Podのコンテナの設定で下記のリソースの設定が必要です。xの所にPodで使いたいGPUの数を指定します。

resources:
  limits:
    alpha.kubernetes.io/nvidia-gpu: x

注意点として、1つのコンテナにつき1つのGPUになります。1つのGPUを複数のコンテナで使うことは、出来ないので注意して下さい。
ちなみに、GPUが足りない場合にPodをデプロイするとSTATUSがpendingになります。

ホスト側のNvidiaのドライバーの/binと/libをマウントする

PodからGPUを使うためにはDaemonSetでインストールしたNvidiaのディレクトリをマウントする必要があります。マウントするのはbinとlibのディレクトリになります。binは必須ではないので、必要がなければマウントしなくても大丈夫です。

- name: nvidia-debug-tools # optional
  hostPath:
    path: /home/kubernetes/bin/nvidia/bin
- name: nvidia-libraries # required
  hostPath:
    path: /home/kubernetes/bin/nvidia/lib

サンプルのPodをデプロイ

それでは、実際にPodをデプロイして動作確認をしてみましょう。デプロイするPodの種類はJobにしてnvidia-smiコマンドを実行するようにします。Jobはバッチ処理的なことを行うためのPodの種類です。nvidia-smiはNVIDIAのシステムマネージメントインタフェースのコマンドで、GPUを正しく認識できているかを確認するために使います。使うイメージはNvidiaの公式のnvidia/cuda:8.0-runtimeです。

下記のYAMLをコピーアンドペーストしてtest-gpu.yamlという名前で保存して下さい。

---
apiVersion: batch/v1
kind: Job
metadata:
  name: test-gpu
spec:
  template:
    metadata:
      labels:
        app: test-gpu
    spec:
      volumes:
      - name: nvidia-debug-tools # optional
        hostPath:
          path: /home/kubernetes/bin/nvidia/bin
      - name: nvidia-libraries # required
        hostPath:
          path: /home/kubernetes/bin/nvidia/lib
      containers:
      - name: test-gpu
        image: nvidia/cuda:8.0-runtime
        command: ["nvidia-smi"]
        resources:
          limits:
            alpha.kubernetes.io/nvidia-gpu: 1
        volumeMounts:
        - name: nvidia-debug-tools
          mountPath: /usr/local/nvidia/bin
        - name: nvidia-libraries
          mountPath: /usr/local/nvidia/lib

下記のコマンドでデプロイします。
$ kubectl apply -f test-gpu.yaml

デプロイが完了したらget jobコマンドでJobの状態を確認しましょう!!

$ kubectl get job
NAME       DESIRED   SUCCESSFUL   AGE
test-gpu   1         1            3m

Jobが完了していれば、SUCCESSFULが1になっていると思います。Jobが完了していたら次はkubectl logでnvidia-smiの結果を確認してみましょう。

$ kubectl logs job/test-gpu
Fri Sep 29 11:41:44 2017
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 384.69                 Driver Version: 384.69                    |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  Tesla K80           Off  | 00000000:00:04.0 Off |                    0 |
| N/A   35C    P0    72W / 149W |      0MiB / 11439MiB |    100%      Default |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID  Type  Process name                               Usage      |
|=============================================================================|
|  No running processes found                                                 |
+-----------------------------------------------------------------------------+

上記のようにノードに搭載されたGPUが結果に表示されていればOKです!
以上でGPUをPodから使う方法は完了です!お疲れ様でした!

まとめ

これでPodからGPUが使えるようになりました。後は各自お好きなPodをデプロイして色々試して見て下さい!
最後になりますが、前回の記事で解説したDaemonSetについて、少し踏み込んだ説明をGCPUG Tokyo DevOps Day September 2017でしたのでご興味のある方は下記の資料を見て頂けると幸いです。

魁!! Gpuクラスタ on gke from shouta yoshikai

その他の記事

Other Articles

2019/05/20
[Web フロントエンド] 状態更新ロジックをフレームワークから独立させる

2019/04/16
C++のenable_shared_from_thisを使う

2019/04/12
OpenAPI 3 ファーストな Web アプリケーション開発(Python で API 編)

2019/04/08
WebGLでレイマーチングを使ったCSGを実現する

2019/04/02
『エンジニア採用最前線』に感化されて2週間でエンジニア主導の求人票更新フローを構築した話

2019/03/29
その1 Jetson TX2でk3s(枯山水)を動かしてみた

2019/03/27
任意のブラウザ上でJestで書いたテストを実行する

2019/02/08
TypeScript で “radian” と “degree” を間違えないようにする

2019/02/05
Python3でGoogle Cloud ML Engineをローカルで動作する方法

2019/01/18
SIGGRAPH Asia 2018 参加レポート

2019/01/08
お正月だョ!ECMAScript Proposal全員集合!!

2019/01/08
カブクエンジニア開発合宿に行ってきました 2018秋

2018/12/25
OpenAPI 3 ファーストな Web アプリケーション開発(環境編)

2018/12/23
いまMLKitカスタムモデル(TF Lite)は使えるのか

2018/12/21
[IoT] Docker on JetsonでMQTTを使ってCloud IoT Coreと通信する

2018/12/11
TypeScriptで実現する型安全な多言語対応(Angularを例に)

2018/12/05
GASでCompute Engineの時間に応じた自動停止/起動ツールを作成する 〜GASで簡単に好きなGoogle APIを叩く方法〜

2018/12/02
single quotes な Black を vendoring して packaging

2018/11/14
3次元データに2次元データの深層学習の技術(Inception V3, ResNet)を適用

2018/11/04
Node Knockout 2018 に参戦しました

2018/10/24
SIGGRAPH 2018参加レポート-後編(VR/AR)

2018/10/11
Angular 4アプリケーションをAngular 6に移行する

2018/10/05
SIGGRAPH 2018参加レポート-特別編(VR@50)

2018/10/03
Three.jsでVRしたい

2018/10/02
SIGGRAPH 2018参加レポート-前編

2018/09/27
ズーム可能なSVGを実装する方法の解説

2018/09/25
Kerasを用いた複数入力モデル精度向上のためのTips

2018/09/21
競技プログラミングの勉強会を開催している話

2018/09/19
Ladder Netwoksによる半教師あり学習

2018/08/10
「Maker Faire Tokyo 2018」に出展しました

2018/08/02
Kerasを用いた複数時系列データを1つの深層学習モデルで学習させる方法

2018/07/26
Apollo GraphQLでWebサービスを開発してわかったこと

2018/07/19
【深層学習】時系列データに対する1次元畳み込み層の出力を可視化

2018/07/11
きたない requirements.txt から Pipenv への移行

2018/06/26
CSS Houdiniを味見する

2018/06/25
不確実性を考慮した時系列データ予測

2018/06/20
Google Colaboratory を自分のマシンで走らせる

2018/06/18
Go言語でWebAssembly

2018/06/15
カブクエンジニア開発合宿に行ってきました 2018春

2018/06/08
2018 年の tree shaking

2018/06/07
隠れマルコフモデル 入門

2018/05/30
DASKによる探索的データ分析(EDA)

2018/05/10
TensorFlowをソースからビルドする方法とその効果

2018/04/23
EGLとOpenGLを使用するコードのビルド方法〜libGLからlibOpenGLへ

2018/04/23
技術書典4にサークル参加してきました

2018/04/13
Python で Cura をバッチ実行するためには

2018/04/04
ARCoreで3Dプリント風エフェクトを実現する〜呪文による積層造形映像制作の舞台裏〜

2018/04/02
深層学習を用いた時系列データにおける異常検知

2018/04/01
音声ユーザーインターフェースを用いた新方式積層造形装置の提案

2018/03/31
Container builderでコンテナイメージをBuildしてSlackで結果を受け取る開発スタイルが捗る

2018/03/23
ngUpgrade を使って AngularJS から Angular に移行

2018/03/14
Three.jsのパフォーマンスTips

2018/02/14
C++17の新機能を試す〜その1「3次元版hypot」

2018/01/17
時系列データにおける異常検知

2018/01/11
異常検知の基礎

2018/01/09
three.ar.jsを使ったスマホAR入門

2017/12/17
Python OpenAPIライブラリ bravado-core の発展的な使い方

2017/12/15
WebAssembly(wat)を手書きする

2017/12/14
AngularJS を Angular に移行: ng-annotate 相当の機能を TypeScrpt ファイルに適用

2017/12/08
Android Thingsで4足ロボットを作る ~ Android ThingsとPCA9685でサーボ制御)

2017/12/06
Raspberry PIとDialogflow & Google Cloud Platformを利用した、3Dプリンターボット(仮)の開発 (概要編)

2017/11/20
カブクエンジニア開発合宿に行ってきました 2017秋

2017/10/19
Android Thingsを使って3Dプリント戦車を作ろう ① ハードウェア準備編

2017/10/05
第1回 魁!! GPUクラスタ on GKE ~GPUクラスタ構築編~

2017/09/13
「Maker Faire Tokyo 2017」に出展しました。

2017/09/11
PyConJP2017に参加しました

2017/09/08
bravado-coreによるOpenAPIを利用したPythonアプリケーション開発

2017/08/23
OpenAPIのご紹介

2017/08/18
EuroPython2017で2名登壇しました。

2017/07/26
3DプリンターでLチカ

2017/07/03
Three.js r86で何が変わったのか

2017/06/21
3次元データへの深層学習の適用

2017/06/01
カブクエンジニア開発合宿に行ってきました 2017春

2017/05/08
Three.js r85で何が変わったのか

2017/04/10
GCPのGPUインスタンスでレンダリングを高速化

2017/02/07
Three.js r84で何が変わったのか

2017/01/27
Google App EngineのFlexible EnvironmentにTmpfsを導入する

2016/12/21
Three.js r83で何が変わったのか

2016/12/02
Three.jsでのクリッピング平面の利用

2016/11/08
Three.js r82で何が変わったのか

2016/12/17
SIGGRAPH 2016 レポート

2016/11/02
カブクエンジニア開発合宿に行ってきました 2016秋

2016/10/28
PyConJP2016 行きました

2016/10/17
EuroPython2016で登壇しました

2016/10/13
Angular 2.0.0ファイナルへのアップグレード

2016/10/04
Three.js r81で何が変わったのか

2016/09/14
カブクのエンジニアインターンシッププログラムについての詩

2016/09/05
カブクのエンジニアインターンとして3ヶ月でやった事 〜高橋知成の場合〜

2016/08/30
Three.js r80で何が変わったのか

2016/07/15
Three.js r79で何が変わったのか

2016/06/02
Vulkanを試してみた

2016/05/20
MakerGoの作り方

2016/05/08
TensorFlow on DockerでGPUを使えるようにする方法

2016/04/27
Blenderの3DデータをMinecraftに送りこむ

2016/04/20
Tensorflowを使ったDeep LearningにおけるGPU性能調査

→
←

関連職種

Recruit

バックエンドエンジニア(Python・Go)

業務内容

当ポジションは弊社Webサービスのバックエンド機能設計及び実装を担当します。 サービス毎の開発チームで2週間スプリントのスクラム開発を実施しています。 週次で開発チームミーティングを実施し、実装設計の相談や工数見積もりを行います。 全ての開発コードはレビューと自動テストによって品質を保っています。 また、リファクタリングやフレームワークのバージョンアップも開発フローに組込み、技術的負債を放置しない開発を目指しています。

フロントエンドエンジニア(TypeScript)

業務内容

当ポジションは弊社Webサービスのフロントエンド機能設計及び実装を担当します。 サービス毎の開発チームで2週間スプリントのスクラム開発を実施しています。 週次で開発チームミーティングを実施し、実装設計の相談や工数見積もりを行います。 全ての開発コードはレビューと自動テストによって品質を保っています。 また、リファクタリングやフレームワークのバージョンアップも開発フローに組込み、技術的負債を放置しない開発を目指しています。

機械学習エンジニア

業務内容

センサーデータの分析モデルの調査・研究・開発。 Kabuku Connectの製造データ(3D、2D)から情報を抽出するモデルの構築。 データの前処理や学習、ハイパーパラメータチューニング、獲得モデルの評価、プロダクションのデータパイプラインとの連携をお願いします。

インターン(Webエンジニア)

業務内容

業務から独立した、調査・研究系のタスクをおまかせしています。コードレビュー、 社内での報告会、 ブログ記事執筆を通して着実にスキルアップしていただくことを目指しています。 (希望があれば、プロダクトの開発業務もおまかせします。)

→
←

お客様のご要望に「Kabuku」はお応えいたします。
ぜひお気軽にご相談ください。

お電話でも受け付けております
03-6380-2750
営業時間:09:30~18:00
※土日祝は除く